Origin of bistability underlying mammalian cell cycle entry
نویسندگان
چکیده
Precise control of cell proliferation is fundamental to tissue homeostasis and differentiation. Mammalian cells commit to proliferation at the restriction point (R-point). It has long been recognized that the R-point is tightly regulated by the Rb-E2F signaling pathway. Our recent work has further demonstrated that this regulation is mediated by a bistable switch mechanism. Nevertheless, the essential regulatory features in the Rb-E2F pathway that create this switching property have not been defined. Here we analyzed a library of gene circuits comprising all possible link combinations in a simplified Rb-E2F network. We identified a minimal circuit that is able to generate robust, resettable bistability. This minimal circuit contains a feed-forward loop coupled with a mutual-inhibition feedback loop, which forms an AND-gate control of the E2F activation. Underscoring its importance, experimental disruption of this circuit abolishes maintenance of the activated E2F state, supporting its importance for the bistability of the Rb-E2F system. Our findings suggested basic design principles for the robust control of the bistable cell cycle entry at the R-point.
منابع مشابه
A comprehensive reduced model of the mammalian cell cycle
The cellular division cycle is an essential process to ensure healthy tissue homeostasis, which can, due to its periodicity, be interpreted as a biological oscillator. This work focuses on identifying the main mechanisms underlying cell cycle rhythms in mammals and propose a mathematical model to describe them. The model is based on post-translational modifications of cyclin Bcdk1, also called ...
متن کاملBistability and Self-oscillations in Cell Cycle Control
A qualitative model of cell cycle control is presented and its transition from bistability to limit cycle oscillations and vice versa is discussed. The origin of this model is the two-dimensional system of kinetic equations introduced by Novak–Tyson which is illustrated computationally and analytically. For this purpose a qualitative model is numerically reconstructed from the steady state beha...
متن کاملBifurcation analysis of the regulatory modules of the mammalian G1/S transition
MOTIVATION Mathematical models of the cell cycle can contribute to an understanding of its basic mechanisms. Modern simulation tools make the analysis of key components and their interactions very effective. This paper focuses on the role of small modules and feedbacks in the gene-protein network governing the G1/S transition in mammalian cells. Mutations in this network may lead to uncontrolle...
متن کاملI-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملRegulation of the mammalian cell cycle: a model of the G1-to-S transition.
We have formulated a mathematical model for regulation of the G(1)-to-S transition of the mammalian cell cycle. This mathematical model incorporates the key molecules and interactions that have been identified experimentally. By subdividing these critical molecules into modules, we have been able to systematically analyze the contribution of each to dynamics of the G(1)-to-S transition. The pri...
متن کامل